S ws~" Publishers

ISSN: 2977-0041

Research Article

Journal of Material Sciences and Engineering Technology

Simple but Smart: Against the Pursuit of Endless Complexity in Deep Learning

Models for Detecting Phishing URLs

Musa Ibrahim Anda', Armaya’u Zango Umar* and Barira Hamisu®

'Dept. of Computer Science and IT Al-Qalam University Katsina, Nigeria
’Dept. of Software Engr. and Cybersec Al-Qalam University Katsina, Nigeria

“Corresponding author

Armaya’u Zango Umar, Dept. of Software Engr. and Cybersec Al-Qalam University Katsina, Nigeria.
Received: January 08, 2026; Accepted: January 19, 2026; Published: January 26, 2026

ABSTRACT

Phishing attacks are one of the most prevalent and evolving cyber security threats. The attacks often employ a fraudulent Universal
Resource Locator (URL) and a well-crafted social engineering tactic to mislead gullible individuals into releasing their sensitive
information, such as bank or credit card details. Machine learning classification models have been proposed to proactively detect phishing
URLSs. In an attempt to improve the detection accuracy, deep learning models were also proposed. Yet, to push the performance of the
models even further, more sophisticated deep learning architectures were proposed. Nonetheless, the sophistication in the architectures
does not improve the performance commensurate with its complexity. To this end, this paper compared the performance of a simple
Feedforward Neural Network (FNN) against more complex architectures: hybridized Deep Neural Network and Bidirectional Long Short-
Term Memory (DNN-BIiLSTM), hybridized Deep Neural Network and Bidirectional Long Short-Term Memory (DNN-BiLSTM) with a
transformer, and hybridized Deep Neural Network and Bidirectional Long Short-Term Memory (DNN-BiLSTM) with semantic Natural
Language Processing (NLP) features. The models were trained on a phishing dataset that had label noise corrected with Cleanlab — A
Confidence learning framework. The results show that a simple Feedforward Neural Network, when trained on cleaned data, can equal or

even surpass the performance of any complex deep learning architecture while maintaining significantly lower runtime.

Introduction

Phishing is a cyber-attack that exploits human vulnerabilities
using a carefully crafted fraud known as social engineering. The
exploitable human vulnerabilities include fear, trust, or curiosity.
For example, attackers might launch a fraudulent airtime
campaign impersonating one of the major telecom companies.
In the campaign, the attackers will provide a fraudulent URL to
redeem the purported offer. When a victim clicks on the provided
link, certain sensitive information will be requested, and when
provided, the attackers have succeeded in deceiving the victim.
Another typical example is impersonating a major corporate
organization, such as a central bank. In this case, the attackers’
message to the victim might be claim to offer certain benefits,
such as government’s palliative or business support. As in the
previous example, a fake URL will be provided which when

clicked, will land the victim on a fake central bank website.
Sensitive information such as bank and credit card details may
be phished from the victim and when provided, such information
is compromised. In both examples, the attackers exploit the trust
the victims have in the reputable organizations and the fear of
missing out from the purported benefits.

To prepare for phishing, the attackers create a domain name
that mimics the real one. For example, if the real domain is cbn.
gov.ng, of which the URL is https://www.cbn.gov.ng/, the fake
domain created by the attackers might be cbn.com (with the
URL as https://www.cbn.com). Similarly, if a real domain of a
telecom service provider is mtn.ng, of which the URL is https://
www.mtn.ng/, the fake one might be m-tn.ng, with the dash after
m (with the URL as https://www.m-tn.ng/). After the creation of

Citation: Musa Ibrahim Anda, Armaya’u Zango Umar, Barira Hamisu. Simple but Smart: Against the Pursuit of Endless Complexity in Deep Learning Models for
Detecting Phishing URLs. J Mat Sci Eng Technol. 2026. 4(1): 1-8. DOI: doi.org/10.61440/JMSET.2026.v4.96

J Mat Sci Eng Technol, 2026

www.oaskpublishers.com

Page: 1 of 8

Copyright © Armaya’u Zango Umar, et al.

Volume 4 | Issue 1

the fake domain, the website of the impersonated organization
will be cloned to have a fake website with the same look and feel
(colour, logo, and aesthetics) as the genuine website.

There have been several attempts to use machine learning
models to detect phishing URLs. These include both white box
and deep learning (black box) models. In the category of white
box models, the studies proposed smart models engineered with
sophisticated ensembling strategies or elegant feature selection
strategies [1-3]. Although a white box model has the advantage
of being interpretable and computationally more efficient than
its deep learning model counterpart, it has a limitation in its
failure to recognize complex patterns that may be present in a
typical phishing URL. Consequently, deep learning models were
also proposed.

In the category of deep learning models, proposed a Long
Short-Term Memory (LSTM) neural network architecture to
capture sequential patterns in URLs [4]. extended this study
using character-level Convolutional Neural Networks (CNNs) to
reduce the computational demand of word-level encoding. The
fact that a URL is a sequential text that often contains information
with a semantic pattern, a study introduced CNN-Fusion, which
used multiple one-layer CNNs with different kernel sizes to
capture spatial patterns at varying granularities [5,6].

In machine learning, there are two (2) popular approaches to
capturing features for model training: (i) character embedding and
(i1) manually hand-crafted. Character embedding is a technique
used to represent individual characters (letters, digits, symbols,
etc.) as dense, low-dimensional vectors in a continuous vector
space. Thus, each individual character in a text sequence is
represented as a numerical vector. These embedding capture
semantic and syntactic similarities between characters, allowing
models to generalize better when processing text data at the
character level [7]. In contrast to character embedding, manually
hand-crafted features refer to features that are explicitly designed
by domain experts or data scientists based on prior knowledge,
intuition, and data analysis. Hand-crafted features were dominant
before the advent of deep learning. In the context of phishing
detection, examples of hand-crafted features include URL length,
the presence of suspicious characters, or domain age.

Although deep learning models can capture complex patterns
in URLs, existing studies have mainly focused on either
hand-crafted features (high-level connections) or character
embedding-based features but not both [5,4]. Consequently, a
hybrid approach, which combines different methods to improve
accuracy and precision, was proposed [8]. The hybrid model
integrates the strengths of both Deep Neural Networks and
Bidirectional Long Short-Term Memory (DNN-BiLSTM)
networks to enhance phishing URL detection. The work in is
state-of-the art but did not benefit from Confident Learning,
leading to a very complicated architecture [8-10]. CL is a
framework in machine learning that focuses on identifying,
quantifying, and correcting label errors in datasets. It is
particularly useful in weakly supervised learning, where training
labels may be noisy or unreliable.

To this end, this paper compared the performance of a simple
Feedforward Neural Network (FNN), engineered with

Confidence Learning, against the complex architecture proposed
in as it was, and against other modifications to the architecture
proposed in [8]. The results show that a simple Feedforward
Neural Network, when trained on cleaned data, with label
noise corrected, can equal or even surpass the performance
of any complex deep learning architecture while maintaining
significantly lower runtime.

Literature Review

Phishing URL detection has witnessed a variety of
methodological approaches, ranging from traditional machine
learning to advanced deep learning architectures. Early models
focused heavily on character-level features derived from raw
URLs. For instance, employed a Long Short-Term Memory
(LSTM) neural network to capture sequential patterns in URLSs,
achieving an accuracy of 98.7% and outperforming Random
Forest classifiers [4]. extended this line of work using character-
level Convolutional Neural Networks (CNNs), emphasizing
speed and lightweight computation by eliminating the need for
external content retrieval [5]. Their model effectively captured
syntactic URL patterns and performed competitively against
benchmark datasets.

In a similar vein, introduced CNN-Fusion, which used multiple
one-layer CNNs with different kernel sizes to capture spatial
patterns at varying granularities [6]. To improve robustness,
they applied spatial dropout and pooling techniques. Their
architecture proved lightweight and suitable for resource-
constrained devices. However, like previous character-level
models, it lacked semantic awareness, making it vulnerable to
more sophisticated or obfuscated phishing strategies.

Other researchers attempted to bridge this gap by integrating
contextual and content-based features. Designed fusion models
that analysed URLs along with webpage titles, body text, and
hidden HTML tags [6]. This allowed their models to extract
semantic relationships beyond syntactic URL patterns. Although
their multi-component architecture provided nuanced insight
into phishing content, its reliance on complete webpage data
makes real-time or large-scale deployment less feasible. A study
also leveraged both URL and HTML data through character and
word embedding, achieving a high detection accuracy of 98.1%.
Nevertheless, the overhead of processing and embedding HTML
content remained a practical bottleneck [11].

Seeking a middle ground, Sudar. Focused on dynamic features
of URLs — such as domain age and live web-scraped content
— and applied forward selection and LASSO regularization to
retain only the most informative attributes. While this method
addressed the limitations of static analysis, it too suffered from
reliance on live web availability, which may be inconsistent or
time-sensitive in real-world phishing cases.

Meanwhile, Wei and Sekiya compared a variety of ensemble
machine learning methods (e.g., Random Forest, AdaBoost,
LightGBM) and neural architectures (FCNN, LSTM, CNN),
ultimately concluding that traditional ensemble methods
outperformed deep learning approaches on their dataset. While
insightful, the study did not explore newer hybrid or attention-
based architectures that may close this performance gap.

J Mat Sci Eng Technol, 2026

www.oaskpublishers.com

Page: 2 of 8

Copyright © Armaya’u Zango Umar, et al.

Volume 4 | Issue 1

A more integrative approach was proposed by van Geest who
developed a hybrid phishing detection framework combining
URL-based models with HTML content and DOM structure
analysis, merged through a stacking ensemble. This demonstrated
improved detection robustness and real-world applicability, but
introduced significant computational complexity, making it less
suitable for scalable or low-latency applications.

Taken together, these studies highlight key gaps in the phishing
detection literature. First, many models focus exclusively
on either character-level or content-level information, often
neglecting the middle ground of semantic URL structures, such
as suspicious tokens, domain heuristics, or entropy scores.
Second, although complex fusion or ensemble models often
show improved accuracy, they tend to suffer from overfitting,
poor scalability, or impractical latency.

Methodology

This section outlines the research design, data pre-processing
techniques, synthetic data augmentation strategies, model
development, and performance evaluation methods used in
this study. The methodology is designed to evaluate the trade-
offs between architectural complexity and performance in
phishing URL detection, with a focus on simplifying models
and optimizing data quality. The methodological workflow is
illustrated in Figure 1.

The Dataset

The dataset employed in this study comprises a total of 11,430
records. It was curated for training and evaluating machine
learning models in the context of phishing detection, with the
primary goal of distinguishing between legitimate and malicious
websites based on a wide array of syntactic, lexical, and structural
characteristics extracted from URLs and their associated web
content [12].

Synthetic Minority Over-sampling Technique (SMOTE)

As class imbalance often affects the performance of machine
learning models, Synthetic Minority Over-sampling Technique
(SMOTE) is a widely used data augmentation method designed
to mitigate class imbalance in machine learning datasets
[13]. When one class (the majority) dominates another (the
minority), models tend to bias predictions toward the majority
class, degrading performance on the minority class. SMOTE
counteracts this by generating synthetic minority-class samples,
thereby balancing the dataset and enhancing model performance.
Data balancing with SMOTE was used in this study to compare
its impact with label noise correction using clean lab.

Conditional Tabular Generative Adversarial Network
(CTGAN),

The Conditional Tabular Generative Adversarial Network
(CTGAN) is a synthetic data generation technique introduced by

[14]. It enhances the traditional GAN architecture to better handle
the generation of structured tabular data [15]. It ensures that the
synthetic data not only mirrors the marginal distributions of the
original dataset but also retains the conditional relationships
among different features. CTGAN begins by selecting a condition
from the actual dataset, which is then combined with random
noise and fed into the conditional generator. This strategy allows
the model to preserve the attribute dependencies present in the
original data.

Confidence Learning with Clean Lab

To address the challenge of label noise, which can significantly
degrade model performance, this study employed the clean lab
framework to automatically identify and remove potentially
mislabelled examples from the training data. The process is
presented in Algorithm 1. The method began by loading the data
and encoding the target feature (Line 3 and 4 of Algorithm 1).
The Algorithm then proceeds with the encoding of the remaining
features (Line 5 of Algorithm 1). Then, a baseline classification
model was built (Line 6 of Algorithm 1). The baseline model plays
a foundational and diagnostic role. It serves as the primary tool
through which clean lab estimates the reliability of each labelled
instance in the dataset. It estimates the probability that a given
sample’s label is incorrect based on the model’s understanding of
the data distribution [16]. In this study, Logistic Regression was
used as the baseline model. Five (5) cross-validated probability
estimates were used to ensure that the detection of label issues
was based on fair and generalizable model behaviour (Line 7 of
Algorithm 1). The labels with noise are detected and removed
(Line 8 and 9 of Algorithm 1). The cleaned dataset is then saved
to a file. The label correction was applied to the three different
datasets: (i) raw dataset, (ii) balanced dataset using SMOTE, and
(iii) augmented dataset using CTGAN. The operation resulted in
producing three (3) cleaned datasets: (i) Cleaned Raw, Cleaned
SMOTE, and (iii) Cleaned CTGAN.

Algorithm 2: Label Noise Correction with Cleanlab

1 | Input: raw dataset

2 | Output: cleaned dataset
3 | Load dataset

4 | Encode target labels

5

Set up preprocessing pipeline:
preprocessor «<— Column Transformer with:
- StandardScaler for numeric features

- OneHotEncoder for categorical features

6 | Build classification pipeline:

model pipeline «— Pipeline with:

- 'preprocessor': preprocessor

- 'classifier': LogisticRegression(mixite=1000)

7 | Perform cross-validated prediction:
predicted probabilities «<— cross_val predict(model
pipeline, X, y, cv=>5)

Detect potential label issues

Remove noisy records

10 | Save cleaned dataset

J Mat Sci Eng Technol, 2026

www.oaskpublishers.com

Page: 3 of 8

Copyright © Armaya’u Zango Umar, et al.

Volume 4 | Issue 1

Training the models

Feedforward Neural Network Architecture (FFN)

In this study, a Feedforward Neural Network (FNN) was
implemented due to its proven capability in modelling complex
nonlinear relationships between input features and target labels
in structured datasets [17]. Prior to feeding the data into the
model, features were standardized using the StandardScaler
method, which transforms each feature to have zero mean and
unit variance. The network consists of three hidden layers;
each composed of fully connected (dense) neurons. The first
layer includes 256 neurons, followed by 128 neurons in the
second layer and 64 neurons in the third. Each layer applies the
Rectified Linear Unit (RLU) activation function to introduce
non-linear transformations and enhance model expressiveness.
To mitigate overfitting, each dense layer is followed by a Batch
Normalization layer and a Dropout layer. Dropout randomly
disables a fraction of neurons during training, preventing co-
adaptation of features [18,19]. Dropout rates were set to 0.3 for
the first two layers and 0.2 for the third, reflecting a decreasing
regularization strategy as the network deepens.

The final layer consists of a single neuron with a sigmoid
activation function, producing a probability output between 0
and 1. The model was compiled using the binary cross-entropy
loss function, which is appropriate for binary classification
problems, and optimized using the Adam optimizer, known for
its robustness and adaptive learning rate properties [20].

DNN-BIiLSTM

This study replicated the hybrid deep learning model that
integrates a Deep Neural Network (DNN) with a Bidirectional
Long Short-Term Memory (BiLSTM) network as proposed in
[8]. For this architecture, the features fed were the raw URL
and the set of manually engineered features. These features
capture statistical, structural, and lexical characteristics of URLs
and domains, such as token counts, entropy values, and the
presence of certain keywords or patterns. The target variable
is transformed into binary format using label encoding, with
"phishing" represented as 1 and "legitimate" as 0. To ensure
consistent feature scale and improve convergence speed during
training, all numerical features are standardized using z-score
normalization.

The raw URL strings, were processed through a character-
level tokenizer. Unlike word-level tokenization, which may
miss obfuscated character patterns used in phishing attacks,
character-level tokenization enables the model to detect subtle
manipulations and irregular character sequences [21]. Each URL
is converted into a sequence of integers and padded to a fixed
length of 75 characters to standardize input dimensions for the
sequential model [22].

The architecture is composed of two parallel branches: (i) 1. DNN
Branch (Processing Hand-Crafted Features) and (ii) BiLSTM
Branch (Processing Character-Level Embeddings). The first
branch (DNN branch) begins with a dense layer comprising 64
neurons activated by the ReL U function, followed by a dropout
layer with a rate of 0.3 to reduce overfitting. Another layer in the
first branch is the second dense layer with 32 neurons to further
abstract the learned representations [23].

The second branch (BiLSTM branch) receives raw URL
sequences in the form of character indices. These are passed
through an embedding layer, which transforms each character
index into a 128-dimensional vector, thereby capturing distributed
representations of characters based on usage context. The
embedded sequences are then fed into a Bidirectional LSTM layer
with 64 units. This recurrent layer processes the sequence in both
forward and backward directions, enabling the model to capture
patterns that may emerge from any part of the URL string.

The outputs of the DNN and BiLSTM branches are combined,
creating a unified feature vector that combines high-level
semantic signals with low-level sequential patterns. This merged
representation is passed through an additional dense layer of 32
neurons with ReLU activation, followed by another dropout
layer to further improve generalization. The final layer consists
of a single neuron activated by the sigmoid function, producing
a probability score for binary classification.

The model is compiled using the binary cross-entropy loss
function, appropriate for two-class problems, and trained using
the Adam optimizer, known for its adaptive learning rate and
computational efficiency [13]. The training process spans 10
epochs with a batch size of 32 and includes a validation split to
monitor performance.

In summary, in the DNN-BILSTM hybrid architecture, the
DNN branch learns from hand-crafted semantic features, while
the BiLSTM branch processes character-level embedding of
URLSs to capture syntactic irregularities and sequential patterns.

Semantic NLP

This model builds upon the previous DNN-BiLSTM design
by incorporating lexical representations of tokenized URL
segments as part of what is here referred to as Semantic NLP
features. These Semantic NLP features are extracted from URLs
by decomposing them into meaningful tokens using common
delimiters such as slashes, dots, and hyphens. The resulting
tokens are vectorised using TF-IDF, which measures the relative
importance of each term based on its frequency and uniqueness
across the corpus. By retaining only the top 100 tokens, the
model captures essential lexical indicators of phishing behaviour,
such as misleading subdomains, obfuscated brand names, and
suspicious keyword combinations.

These semantic features were combined with hand-crafted
features to form a rich structured input. This combined feature
set is normalized and passed into a deep neural network,
which constitutes the DNN branch of the model. The DNN is
thus responsible for learning high-level patterns from both
quantitative behaviours, represented by hand-crafted features,
and semantic word cues from the URL tokens.

In parallel, the model processes the raw URL strings using
character-level tokenization on the BIiLSTM branch. The
outputs of the Semantic NLP + hand-crafted DNN branch and
the BiLSTM branch are combined, fused through an additional
dense layer, and passed into a sigmoid-activated output neuron
for binary classification. The model is trained using binary cross-
entropy loss, optimized via Adam.

J Mat Sci Eng Technol, 2026

www.oaskpublishers.com

Page: 4 of 8

Copyright © Armaya’u Zango Umar, et al.

Volume 4 | Issue 1

Transformer Architecture

This model added a URL Transformer encoder to the DNN-
BiLSTM architecture. The URL Transformer block defines
multi-head self-attention, residual connections, and feed-
forward layers, resembling the encoder module of the original
Transformer architecture. The sequence is passed through two
BiLSTM layers: the first with 128 units returning sequences,
and the second with 64 units reducing it to a fixed-length output
vector. This two-stage BiLSTM stack captures both local and
long-range dependencies in the URL string, a critical advantage
when detecting manipulations that occur across various positions
in the URL.

The outputs of the DNN branch and the BiLSTM branch are
concatenated to form a unified latent representation. This
combined vector is passed through a dense layer with 64 GELU-
activated neurons, followed by dropout. The final classification
is performed using a sigmoid-activated neuron that outputs the
probability of the instance being phishing or legitimate. The
model is compiled using binary cross-entropy loss and optimized
with the Adam optimizer, utilizing a custom exponential decay
learning rate schedule. This schedule starts with a learning rate
of 0.001 and decays over time, facilitating better convergence
during prolonged training. To avoid overfitting and ensure
optimal performance on phishing detection (class 1), early
stopping is configured to monitor validation recall with a
patience of five epochs. Furthermore, class weights are applied
to slightly prioritize the minority class, addressing mild label
imbalance.

Evaluation

In the context of this study, the evaluation process involves
various metrics and techniques to measure the model's predictive
accuracy and generalization capabilities.

Precision: Calculates the proportion of true positive predictions
among all positive predictions. It's a measure of the model's
ability to avoid false positives. The formula is given as:

P

Precision =—
TP+ FP

Where TP means True Positive and FP means False Positive

Recall (Sensitivity): Calculates the proportion of true positive
predictions among all actual positives. It's a measure of the
model's ability to capture all positives. The formula is given as:

P

Recall =——
TP+ FN

Where FN means False Negative

F1-Score: Harmonic mean of precision and recall, providing
a balance between the two metrics. Useful when the class
distribution is imbalanced. The formula is:

Fle 2 x precision x recall

precision +recall

Runtime. Runtime refers to the total amount of time a model
takes to complete a specific task, such as training or inference.
In the context of phishing URL detection, runtime is typically
measured in seconds (s) and serves as an essential metric for
evaluating a model’s computational efficiency and practicality.

Results and Discussions

This section presents a comprehensive analysis of experimental
results evaluating the performance, computational efficiency,
and robustness of four machine learning models across diverse
dataset conditions. The investigation focuses on three critical
dimensions: (1) model effectiveness on noisy versus cleaned
datasets, measured by Fl-scores; (2) computational runtime
efficiency; and (3) the trade-offs between training time and
classification accuracy, particularly in the context of phishing
detection.

0.97 0.97
0.96 0.96
0.96
0.94
0.92
0.90
FNN

DNN-BILSTM Transformer Semantic NLP

F1-Score

Model

Figure 2: Comparison of FNN, DNN-BiLSTM, Transformer,
and Semantic NLP before label noise correction using the F1-
score metric

The bar graph, in Figure 2 provides a quantitative comparison
of four models: Feedforward Neural Network (FNN), Deep
Neural Network with Bidirectional Long Short-Term Memory
(DNN-BIiLSTM), Transformer, and Semantic NLP, using the F1-
score metric. The results reveal distinct disparities in the models'
ability to handle noise, with scores as follows: FNN: 0.96, DNN-
BiLSTM: 0.96, Transformer: 0.96, and Semantic NLP: 0.97.

Semantic NLP emerged as the top-performing model, achieving
an F1-score of 0.97. This superior performance can be attributed
to its focus on contextual and semantic understanding, which
enables it to discern meaningful patterns despite noise. By
leveraging advanced linguistic features, Semantic NLP mitigates
the distortions introduced by noisy data, making it particularly
effective for tasks requiring nuanced interpretation.

Model
1.00 — NN
DNN-BILSTM
m= Transformer
Semantic NLP

008 |09 0% 098 098 098

097

095 095

Cleaned Raw Cleaned SMOTE Cleaned Smote

Cleaned Dataset

Cleaned CTGAN

Figure 3: Comparison of FNN, DNN-BIiLSTM, Transformer,
and Semantic NLP after label noise correction on three datasets:
(1) Raw dataset, (ii) Dataset balanced with SMOTE, and (iii)
Dataset augmented with CTGA- using the F1-score metric

J Mat Sci Eng Technol, 2026

www.oaskpublishers.com

Page: 5 of 8

Copyright © Armaya’u Zango Umar, et al.

Volume 4 | Issue 1

The graph in Figure 3 shows that the FNN consistently
outperformed other models across all cleaned datasets, achieving
the highest score (0.98) on the dataset with label noise corrected
(Cleaned Raw). This suggests that for cleaned datasets, simpler
architectures may sometimes outperform more complex
ones. DNN-BIiLSTM maintained strong performance, closely
following FNN, indicating that its bidirectional processing
remains effective even with cleaned data. The Transformer
showed moderate performance, while Semantic NLP, despite
its sophistication, ranked lowest in this comparison. The FNN's
strong performance challenges the common assumption that
complex models always outperform simpler ones.

Average Runtime Comparison of Models

DNN-BILSTM NN ‘Semantic NLP. Transformer

Figure 4: Comparison of computational efficiency of FNN,
DNN-BILSTM, Transformer, and Semantic NLP after label
correction

The bar graph in Figure 4 shows the following results: DNN-
BiLSTM: 653.1 seconds, FNN: 39.47 seconds, Semantic NLP:
32.3 seconds, Transformer: 810.7 seconds. Thus, FNN Semantic
NLP, despite its advanced semantic processing capabilities, also
demonstrates impressive efficiency. In contrast, DNN-BiLSTM
and Transformer exhibited significantly higher runtimes (653.1
seconds and 810.7 seconds, respectively). The DNN-BiLSTM's
bidirectional recurrent layers require sequential processing
of data in both forward and backward directions, leading to
increased computational time. The Transformer, while powerful,
suffers from the quadratic complexity of its self-attention
mechanisms, particularly for longer input sequences, which
explains its status as the slowest model in this comparison.

Phishing

Training Time (seconds) - Log Scale

Figure 5: The trade-offs between model training time and
classification performance for various phishing detection models
and datasets

Figure 5 presents the trade-offs between model training time and
classification performance for various phishing detection models
and datasets. The x-axis, scaled logarithmically, quantifies the

training duration in seconds, reflecting computational resource
allocation. The y-axis represents the F1-Score, a robust metric
for evaluating classification models, particularly in scenarios
with imbalanced class distributions, as it harmonically averages
precision and recall. The shaded light green region at the upper-
left quadrant of the plot signifies the optimal zone. This area
delineates models that concurrently achieve high F1-Scores
(generally exceeding 0.95) and relatively expedient training
times (approximately below 200 seconds). This zone represents
the ideal balance between predictive accuracy and computational
efficiency.

Notably, several FNN configurations, especially those trained on
Cleaned Raw, Cleaned SMOTE, and Noisy SMOTE datasets,
are situated within or in close proximity to this optimal zone.
These models consistently yielded F1-Scores above 0.97 with
training durations significantly less than 100 seconds. This
finding underscores the potential of FNNs, when coupled with
Confidence Learning, to serve as highly efficient and effective
solutions for phishing detection. Models such as DNN-BILSTM
Cleaned Raw and Semantic NLP Noisy Raw demonstrate
commendable F1-Scores (approaching 0.97-0.98), indicating
strong classification capabilities. However, their placement
further to the right on the x-axis reveals substantially longer
training times, extending into several hundred seconds. This
suggests that while these models offer high accuracy, their
computational demands for training may be considerable.

Conversely, certain model-dataset combinations exhibit
suboptimal F1-Scores. For instance, FNN Noisy CTGAN yields
a very low F1-Score (around 0.85) despite a moderate training
time. Even more critically, DNN-BIiLSTM Noisy CTGAN
not only demonstrates poor performance but also incurs an
exceedingly long training time, approaching 1000 seconds. Such
instances highlight the critical interplay between model choice,
data quality, and the efficacy of augmentation techniques.

Discussions

The effectiveness of CleanLab as a noise-removal tool becomes
evident when evaluating its impact across various models and
datasets, particularly on FNN and the replicated DNN-BiLSTM
architecture. For instance, the FNN trained on noisy raw data
achieved a baseline F1-score of 0.96. After applying CleanLab
to this same dataset, the accuracy improved to 0.98, marking a
2% increase. This improvement demonstrates the value of label
noise correction. This enhancement also becomes more notable
when compared to the replicated DNN-BILSTM architecture,
which achieved 0.97 on the same cleaned dataset. Despite the
architectural sophistication of the hybrid model, the cleaned
FNN still outperformed it by a margin of 1%, indicating that
data quality can rival-or even outweigh complex model when it
comes to performance gains.

An even more dramatic effect of label cleaning is observed on
synthetically augmented datasets, particularly those generated
using CTGAN. CTGAN is known to introduce a high degree
of variability, and occasionally noise, due to its generative
adversarial nature. When FNN was trained on the raw CTGAN-
generated dataset, it recorded a poor performance of 0.85,
highlighting the detrimental effect of training on synthetic

J Mat Sci Eng Technol, 2026

www.oaskpublishers.com

Page: 6 of 8

Copyright © Armaya’u Zango Umar, et al.

Volume 4 | Issue 1

samples with noisy or ambiguous labels. However, after the data
was cleaned using CleanLab, the model’s performance surged to
0.95, reflecting a 10% absolute improvement. This underscores
the critical importance of post-synthetic label verification when
using generative data augmentation strategies.

Similarly, the replicated DNN-BiLSTM architecture showed
improvement when trained on SMOTE-augmented data. On raw
SMOTE data, it achieved an Fl-score of 0.97. After applying
CleanLab, this score nudged upward to 0.98. While the gain here
is modest (1%), it confirms that even high-quality oversampling
methods like SMOTE can benefit from noise filtering, especially
by removing subtle outliers or mislabelled data that may
otherwise misguide gradient updates during training.

Conclusion

This study demonstrates that a simple Feedforward Neural
Network (FNN), when trained on a dataset with label
noise corrected using the Cleanlab framework, can achieve
performance comparable to or surpassing more complex deep
learning architectures, such as the hybridized Deep Neural
Network and Bidirectional Long Short-Term Memory (DNN-
BiLSTM), DNN-BIiLSTM with a transformer, and DNN-
BiLSTM with semantic Natural Language Processing (NLP)
features, in the task of phishing URL detection. The FNN
achieved an impressive Fl-score of 0.98 on the cleaned raw
dataset, outperforming the more sophisticated models while
requiring significantly lower computational resources, with
a training time of approximately 39.47 seconds compared to
over 600 seconds for DNN-BILSTM and 810.7 seconds for the
transformer-based model. The application of Cleanlab for label
noise correction proved critical, enhancing model performance
by up to 10% on synthetically augmented datasets like those
generated by CTGAN. These findings challenge the prevailing
trend of pursuing increasingly complex architectures for
marginal performance gains, highlighting the importance of data
quality over model complexity. Future research could explore
the generalizability of these findings across diverse datasets and
cybersecurity tasks.

References

1. Alsariera YA, Balogun AO, Adeyemo VE, Tarawneh OH,
Mojeed HA. Intelligent tree-based ensemble approaches
for phishing website detection. Jestec.Taylors.Edu.MyYA
Alsariera, AO Balogun, VE Adeyemo, OH Tarawneh, HA
MojeedJ. Eng. Sci. Technol. 2022. 17: 563-582.

2. Ahammad SH, Kale SD, Upadhye GD, Pande SD, Babu
EV, et al. Phishing URL detection using machine learning
methods. Advances in Engineering Software. 2022.

3. BalogunAO, Mojeed HA, Adewole KS, Akintola AG, Salihu
SA, et al. Optimized decision forest for website phishing
detection. InProceedings of the Computational Methods
in Systems and Software Cham: Springer International
Publishing. 2021. 568-582.

4. Bahnsen AC, Bohorquez EC, Villegas S, Vargas J,
Gonzalez FA. Classifying phishing URLs using recurrent
neural networks. ECrime Researchers Summit, ECrime.
2017.

5. Aljofey A, Jiang Q, Qu Q, Huang M, Niyigena JP. An
effective phishing detection model based on character

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

level convolutional neural network from URL. Electronics
(Switzerland). 2020.

Liu DJ, Geng GG, Zhang, XC. Multi-scale semantic deep
fusion models for phishing website detection. Expert
Systems with Applications. 2022. 209: 118305.
Ballesteros M, Dyer C, Smith NA. Improved transition-
based parsing by modeling characters instead of words
with LSTMs. Conference Proceedings - EMNLP 2015:
Conference on Empirical Methods in Natural Language
Processing. 2015.

Ozcan A, Catal C, Donmez E, Senturk B. A hybrid
DNN-LSTM model for detecting phishing URLs. Neural
Computing and Applications. 2023. 35: 4957-4973.
Northcutt C, Jiang L, Chuang I. Confident learning:
Estimating uncertainty in dataset labels. Journal of
Artificial Intelligence Research. 2021. 70: 1373-411.
Zhang M, Gao J, Lyu Z, Zhao W, Wang Q, et al.
Characterizing label errors: confident learning for noisy-
labeled image segmentation. InInternational conference
on medical image computing and computer-assisted
intervention. Cham: Springer International Publishing.
2020. 29: 721-730.

Opara C, Chen Y, Wei B. Look before you leap: Detecting
phishing web pages by exploiting raw URL and HTML
characteristics. Expert Systems with Applications. 2024.
236.

Abdelhakim H, Salima Y. Web page phishing detection.
Engineering Applications of Artificial Intelligence.
2021.

Elreedy D, Atiya AF. A Comprehensive Analysis of
Synthetic Minority Oversampling Technique (SMOTE) for
handling class imbalance. Information Sciences. 2019. 505:
32-64.

Xu L, Skoularidou M, Cuesta-Infante A, Veeramachaneni
K. Modeling tabular data using conditional GAN.
Advances in Neural Information Processing Systems.
2019. 32.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-
Farley D, et al. Generative adversarial networks.
Communications of the ACM. 2020. 63: 139-144.
Northcutt CG, Athalye A, Mueller J. Pervasive Label Errors
in Test Sets Destabilize Machine Learning Benchmarks.
Advances in Neural Information Processing Systems. 2021.
Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015.
521: 436-444.

Ioffe S, Szegedy C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. 32nd
International Conference on Machine Learning, ICML.
2015. 1: 448-456.

SrivastavaNitish, HintonGeoffrey, = KrizhevskyAlex,
Sutskeverllya, SalakhutdinovRuslan. Dropout. The
Journal of Machine Learning Research. 2014. 15: 1929-
1958.

Kingma DP, Ba JL. Adam: A method for stochastic
optimization. 3rd International Conference on Learning
Representations, ICLR 2015 - Conference Track
Proceedings. 2015.

Correa Bahnsen A. DeepPhish Simulating Malicious
Al. Proceedings of the Symposium on Electronic Crime
Research, San Diego, CA, USA. 2018. 1-8.

J Mat Sci Eng Technol, 2026

www.oaskpublishers.com

Page: 70f 8

Copyright © Armaya’u Zango Umar, et al. Volume 4 | Issue 1

22. Karim A, Shahroz M, Mustofa K, Belhaouari SB, Joga SR.
Phishing detection system through hybrid machine learning
based on URL. IEEE Access. 2023. 11: 36805-36822.

23. Zhu E, Ju Y, Chen Z, Liu F, Fang X. DTOF-ANN: an
artificial neural network phishing detection model based on
decision tree and optimal features. Applied Soft Computing.
2020. 95: 106505.

Copyright: © 2026 Armaya’u Zango Umar, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Mat Sci Eng Technol, 2026 www.oaskpublishers.com Page: 8 of 8

