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ABSTRACT
Phishing attacks are one of the most prevalent and evolving cyber security threats. The attacks often employ a fraudulent Universal 
Resource Locator (URL) and a well-crafted social engineering tactic to mislead gullible individuals into releasing their sensitive 
information, such as bank or credit card details. Machine learning classification models have been proposed to proactively detect phishing 
URLs. In an attempt to improve the detection accuracy, deep learning models were also proposed. Yet, to push the performance of the 
models even further, more sophisticated deep learning architectures were proposed. Nonetheless, the sophistication in the architectures 
does not improve the performance commensurate with its complexity. To this end, this paper compared the performance of a simple 
Feedforward Neural Network (FNN) against more complex architectures: hybridized Deep Neural Network and Bidirectional Long Short-
Term Memory (DNN-BiLSTM), hybridized Deep Neural Network and Bidirectional Long Short-Term Memory (DNN-BiLSTM) with a 
transformer, and hybridized Deep Neural Network and Bidirectional Long Short-Term Memory (DNN-BiLSTM) with semantic Natural 
Language Processing (NLP) features.  The models were trained on a phishing dataset that had label noise corrected with Cleanlab – A 
Confidence learning framework. The results show that a simple Feedforward Neural Network, when trained on cleaned data, can equal or 
even surpass the performance of any complex deep learning architecture while maintaining significantly lower runtime.

ISSN: 2977-0041

Introduction
Phishing is a cyber-attack that exploits human vulnerabilities 
using a carefully crafted fraud known as social engineering. The 
exploitable human vulnerabilities include fear, trust, or curiosity. 
For example, attackers might launch a fraudulent airtime 
campaign impersonating one of the major telecom companies. 
In the campaign, the attackers will provide a fraudulent URL to 
redeem the purported offer. When a victim clicks on the provided 
link, certain sensitive information will be requested, and when 
provided, the attackers have succeeded in deceiving the victim. 
Another typical example is impersonating a major corporate 
organization, such as a central bank. In this case, the attackers’ 
message to the victim might be claim to offer certain benefits, 
such as government’s palliative or business support. As in the 
previous example, a fake URL will be provided which when 

clicked, will land the victim on a fake central bank website. 
Sensitive information such as bank and credit card details may 
be phished from the victim and when provided, such information 
is compromised. In both examples, the attackers exploit the trust 
the victims have in the reputable organizations and the fear of 
missing out from the purported benefits. 

To prepare for phishing, the attackers create a domain name 
that mimics the real one. For example, if the real domain is cbn.
gov.ng, of which the URL is https://www.cbn.gov.ng/, the fake 
domain created by the attackers might be cbn.com (with the 
URL as https://www.cbn.com). Similarly, if a real domain of a 
telecom service provider is mtn.ng, of which the URL is https://
www.mtn.ng/, the fake one might be m-tn.ng, with the dash after 
m (with the URL as https://www.m-tn.ng/). After the creation of 
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the fake domain, the website of the impersonated organization 
will be cloned to have a fake website with the same look and feel 
(colour, logo, and aesthetics) as the genuine website.

There have been several attempts to use machine learning 
models to detect phishing URLs. These include both white box 
and deep learning (black box) models.  In the category of white 
box models,  the studies proposed smart models engineered with 
sophisticated ensembling strategies or elegant feature selection 
strategies [1-3].  Although a white box model has the advantage 
of being interpretable and computationally more efficient than 
its deep learning model counterpart, it has a limitation in its 
failure to recognize complex patterns that may be present in a 
typical phishing URL. Consequently, deep learning models were 
also proposed.

In the category of deep learning models, proposed a Long 
Short-Term Memory (LSTM) neural network architecture to 
capture sequential patterns in URLs [4].  extended this study 
using character-level Convolutional Neural Networks (CNNs) to 
reduce the computational demand of word-level encoding. The 
fact that a URL is a sequential text that often contains information 
with a semantic pattern, a study introduced CNN-Fusion, which 
used multiple one-layer CNNs with different kernel sizes to 
capture spatial patterns at varying granularities [5,6]. 

In machine learning, there are two (2) popular approaches to 
capturing features for model training: (i) character embedding and 
(ii) manually hand-crafted. Character embedding is a technique 
used to represent individual characters (letters, digits, symbols, 
etc.) as dense, low-dimensional vectors in a continuous vector 
space. Thus, each individual character in a text sequence is 
represented as a numerical vector. These embedding capture 
semantic and syntactic similarities between characters, allowing 
models to generalize better when processing text data at the 
character level [7]. In contrast to character embedding, manually 
hand-crafted features refer to features that are explicitly designed 
by domain experts or data scientists based on prior knowledge, 
intuition, and data analysis. Hand-crafted features were dominant 
before the advent of deep learning. In the context of phishing 
detection, examples of hand-crafted features include URL length, 
the presence of suspicious characters, or domain age.

Although deep learning models can capture complex patterns 
in URLs, existing studies have mainly focused on either 
hand-crafted features (high-level connections) or character 
embedding-based features but not both [5,4]. Consequently, a 
hybrid approach, which combines different methods to improve 
accuracy and precision, was proposed [8].  The hybrid model 
integrates the strengths of both Deep Neural Networks and 
Bidirectional Long Short-Term Memory (DNN-BiLSTM) 
networks to enhance phishing URL detection.  The work in  is 
state-of-the art but did not benefit from Confident Learning, 
leading to a very complicated architecture [8-10]. CL is a 
framework in machine learning that focuses on identifying, 
quantifying, and correcting label errors in datasets. It is 
particularly useful in weakly supervised learning, where training 
labels may be noisy or unreliable. 

To this end, this paper compared the performance of a simple 
Feedforward Neural Network (FNN), engineered with 

Confidence Learning, against the complex architecture proposed 
in as it was, and against other modifications to the architecture 
proposed in [8].   The results show that a simple Feedforward 
Neural Network, when trained on cleaned data, with label 
noise corrected, can equal or even surpass the performance 
of any complex deep learning architecture while maintaining 
significantly lower runtime.

Literature Review
Phishing URL detection has witnessed a variety of 
methodological approaches, ranging from traditional machine 
learning to advanced deep learning architectures. Early models 
focused heavily on character-level features derived from raw 
URLs. For instance, employed a Long Short-Term Memory 
(LSTM) neural network to capture sequential patterns in URLs, 
achieving an accuracy of 98.7% and outperforming Random 
Forest classifiers [4]. extended this line of work using character-
level Convolutional Neural Networks (CNNs), emphasizing 
speed and lightweight computation by eliminating the need for 
external content retrieval [5]. Their model effectively captured 
syntactic URL patterns and performed competitively against 
benchmark datasets.

In a similar vein, introduced CNN-Fusion, which used multiple 
one-layer CNNs with different kernel sizes to capture spatial 
patterns at varying granularities [6]. To improve robustness, 
they applied spatial dropout and pooling techniques. Their 
architecture proved lightweight and suitable for resource-
constrained devices. However, like previous character-level 
models, it lacked semantic awareness, making it vulnerable to 
more sophisticated or obfuscated phishing strategies.

Other researchers attempted to bridge this gap by integrating 
contextual and content-based features. Designed fusion models 
that analysed URLs along with webpage titles, body text, and 
hidden HTML tags [6]. This allowed their models to extract 
semantic relationships beyond syntactic URL patterns. Although 
their multi-component architecture provided nuanced insight 
into phishing content, its reliance on complete webpage data 
makes real-time or large-scale deployment less feasible. A study 
also leveraged both URL and HTML data through character and 
word embedding, achieving a high detection accuracy of 98.1%. 
Nevertheless, the overhead of processing and embedding HTML 
content remained a practical bottleneck [11].

Seeking a middle ground, Sudar. Focused on dynamic features 
of URLs — such as domain age and live web-scraped content 
— and applied forward selection and LASSO regularization to 
retain only the most informative attributes. While this method 
addressed the limitations of static analysis, it too suffered from 
reliance on live web availability, which may be inconsistent or 
time-sensitive in real-world phishing cases.

Meanwhile, Wei and Sekiya compared a variety of ensemble 
machine learning methods (e.g., Random Forest, AdaBoost, 
LightGBM) and neural architectures (FCNN, LSTM, CNN), 
ultimately concluding that traditional ensemble methods 
outperformed deep learning approaches on their dataset. While 
insightful, the study did not explore newer hybrid or attention-
based architectures that may close this performance gap.
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A more integrative approach was proposed by van Geest who 
developed a hybrid phishing detection framework combining 
URL-based models with HTML content and DOM structure 
analysis, merged through a stacking ensemble. This demonstrated 
improved detection robustness and real-world applicability, but 
introduced significant computational complexity, making it less 
suitable for scalable or low-latency applications.

Taken together, these studies highlight key gaps in the phishing 
detection literature. First, many models focus exclusively 
on either character-level or content-level information, often 
neglecting the middle ground of semantic URL structures, such 
as suspicious tokens, domain heuristics, or entropy scores. 
Second, although complex fusion or ensemble models often 
show improved accuracy, they tend to suffer from overfitting, 
poor scalability, or impractical latency. 

Methodology
This section outlines the research design, data pre-processing 
techniques, synthetic data augmentation strategies, model 
development, and performance evaluation methods used in 
this study. The methodology is designed to evaluate the trade-
offs between architectural complexity and performance in 
phishing URL detection, with a focus on simplifying models 
and optimizing data quality. The methodological workflow is 
illustrated in Figure 1.

The Dataset
The dataset employed in this study comprises a total of 11,430 
records. It was curated for training and evaluating machine 
learning models in the context of phishing detection, with the 
primary goal of distinguishing between legitimate and malicious 
websites based on a wide array of syntactic, lexical, and structural 
characteristics extracted from URLs and their associated web 
content [12].

Synthetic Minority Over-sampling Technique (SMOTE)
As class imbalance often affects the performance of machine 
learning models, Synthetic Minority Over-sampling Technique 
(SMOTE) is a widely used data augmentation method designed 
to mitigate class imbalance in machine learning datasets 
[13]. When one class (the majority) dominates another (the 
minority), models tend to bias predictions toward the majority 
class, degrading performance on the minority class. SMOTE 
counteracts this by generating synthetic minority-class samples, 
thereby balancing the dataset and enhancing model performance.  
Data balancing with SMOTE was used in this study to compare 
its impact with label noise correction using clean lab. 

Conditional Tabular Generative Adversarial Network 
(CTGAN),
The Conditional Tabular Generative Adversarial Network 
(CTGAN) is a synthetic data generation technique introduced by 

[14]. It enhances the traditional GAN architecture to better handle 
the generation of structured tabular data [15]. It ensures that the 
synthetic data not only mirrors the marginal distributions of the 
original dataset but also retains the conditional relationships 
among different features. CTGAN begins by selecting a condition 
from the actual dataset, which is then combined with random 
noise and fed into the conditional generator. This strategy allows 
the model to preserve the attribute dependencies present in the 
original data.

Confidence Learning with Clean Lab
To address the challenge of label noise, which can significantly 
degrade model performance, this study employed the clean lab 
framework to automatically identify and remove potentially 
mislabelled examples from the training data. The process is 
presented in Algorithm 1. The method began by loading the data 
and encoding the target feature (Line 3 and 4 of Algorithm 1). 
The Algorithm then proceeds with the encoding of the remaining 
features (Line 5 of Algorithm 1). Then, a baseline classification 
model was built (Line 6 of Algorithm 1). The baseline model plays 
a foundational and diagnostic role. It serves as the primary tool 
through which clean lab estimates the reliability of each labelled 
instance in the dataset. It estimates the probability that a given 
sample’s label is incorrect based on the model’s understanding of 
the data distribution [16]. In this study, Logistic Regression was 
used as the baseline model. Five (5) cross-validated probability 
estimates were used to ensure that the detection of label issues 
was based on fair and generalizable model behaviour (Line 7 of 
Algorithm 1).  The labels with noise are detected and removed 
(Line 8 and 9 of Algorithm 1). The cleaned dataset is then saved 
to a file. The label correction was applied to the three different 
datasets: (i) raw dataset, (ii) balanced dataset using SMOTE, and 
(iii) augmented dataset using CTGAN. The operation resulted in 
producing three (3) cleaned datasets: (i) Cleaned Raw, Cleaned 
SMOTE, and (iii) Cleaned CTGAN.
 
Algorithm 2: Label Noise Correction with Cleanlab
1 Input: raw dataset
2 Output: cleaned_dataset
3 Load dataset
4 Encode target labels
5 Set up preprocessing pipeline:

preprocessor ← Column Transformer with:
- StandardScaler for numeric features
- OneHotEncoder for categorical features

6 Build classification pipeline:
model_pipeline ← Pipeline with:
- 'preprocessor': preprocessor
- 'classifier': LogisticRegression(mixite=1000)

7 Perform cross-validated prediction:
predicted probabilities ← cross_val_predict(model 
pipeline, X, y, cv=5)

8 Detect potential label issues
9 Remove noisy records
10 Save cleaned dataset
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Training the models
Feedforward Neural Network Architecture (FFN)
In this study, a Feedforward Neural Network (FNN) was 
implemented due to its proven capability in modelling complex 
nonlinear relationships between input features and target labels 
in structured datasets [17].  Prior to feeding the data into the 
model, features were standardized using the StandardScaler 
method, which transforms each feature to have zero mean and 
unit variance.  The network consists of three hidden layers; 
each composed of fully connected (dense) neurons. The first 
layer includes 256 neurons, followed by 128 neurons in the 
second layer and 64 neurons in the third. Each layer applies the 
Rectified Linear Unit (RLU) activation function to introduce 
non-linear transformations and enhance model expressiveness. 
To mitigate overfitting, each dense layer is followed by a Batch 
Normalization layer and a Dropout layer. Dropout randomly 
disables a fraction of neurons during training, preventing co-
adaptation of features [18,19]. Dropout rates were set to 0.3 for 
the first two layers and 0.2 for the third, reflecting a decreasing 
regularization strategy as the network deepens.

The final layer consists of a single neuron with a sigmoid 
activation function, producing a probability output between 0 
and 1. The model was compiled using the binary cross-entropy 
loss function, which is appropriate for binary classification 
problems, and optimized using the Adam optimizer, known for 
its robustness and adaptive learning rate properties [20]. 

DNN-BiLSTM 
This study replicated the hybrid deep learning model that 
integrates a Deep Neural Network (DNN) with a Bidirectional 
Long Short-Term Memory (BiLSTM) network as proposed in 
[8].  For this architecture, the features fed were the raw URL 
and the set of manually engineered features. These features 
capture statistical, structural, and lexical characteristics of URLs 
and domains, such as token counts, entropy values, and the 
presence of certain keywords or patterns. The target variable 
is transformed into binary format using label encoding, with 
"phishing" represented as 1 and "legitimate" as 0. To ensure 
consistent feature scale and improve convergence speed during 
training, all numerical features are standardized using z-score 
normalization.

The raw URL strings, were processed through a character-
level tokenizer. Unlike word-level tokenization, which may 
miss obfuscated character patterns used in phishing attacks, 
character-level tokenization enables the model to detect subtle 
manipulations and irregular character sequences [21]. Each URL 
is converted into a sequence of integers and padded to a fixed 
length of 75 characters to standardize input dimensions for the 
sequential model [22].

The architecture is composed of two parallel branches: (i) 1. DNN 
Branch (Processing Hand-Crafted Features) and (ii) BiLSTM 
Branch (Processing Character-Level Embeddings). The first 
branch (DNN branch) begins with a dense layer comprising 64 
neurons activated by the ReLU function, followed by a dropout 
layer with a rate of 0.3 to reduce overfitting. Another layer in the 
first branch is the second dense layer with 32 neurons to further 
abstract the learned representations [23]. 

The second branch (BiLSTM branch) receives raw URL 
sequences in the form of character indices. These are passed 
through an embedding layer, which transforms each character 
index into a 128-dimensional vector, thereby capturing distributed 
representations of characters based on usage context. The 
embedded sequences are then fed into a Bidirectional LSTM layer 
with 64 units. This recurrent layer processes the sequence in both 
forward and backward directions, enabling the model to capture 
patterns that may emerge from any part of the URL string.
 
The outputs of the DNN and BiLSTM branches are combined, 
creating a unified feature vector that combines high-level 
semantic signals with low-level sequential patterns. This merged 
representation is passed through an additional dense layer of 32 
neurons with ReLU activation, followed by another dropout 
layer to further improve generalization. The final layer consists 
of a single neuron activated by the sigmoid function, producing 
a probability score for binary classification.

The model is compiled using the binary cross-entropy loss 
function, appropriate for two-class problems, and trained using 
the Adam optimizer, known for its adaptive learning rate and 
computational efficiency [13]. The training process spans 10 
epochs with a batch size of 32 and includes a validation split to 
monitor performance. 

In summary, in the DNN–BiLSTM hybrid architecture, the 
DNN branch learns from hand-crafted semantic features, while 
the BiLSTM branch processes character-level embedding of 
URLs to capture syntactic irregularities and sequential patterns. 

Semantic NLP
This model builds upon the previous DNN–BiLSTM design 
by incorporating lexical representations of tokenized URL 
segments as part of what is here referred to as Semantic NLP 
features. These Semantic NLP features are extracted from URLs 
by decomposing them into meaningful tokens using common 
delimiters such as slashes, dots, and hyphens. The resulting 
tokens are vectorised using TF-IDF, which measures the relative 
importance of each term based on its frequency and uniqueness 
across the corpus. By retaining only the top 100 tokens, the 
model captures essential lexical indicators of phishing behaviour, 
such as misleading subdomains, obfuscated brand names, and 
suspicious keyword combinations.

These semantic features were combined with hand-crafted 
features to form a rich structured input. This combined feature 
set is normalized and passed into a deep neural network, 
which constitutes the DNN branch of the model. The DNN is 
thus responsible for learning high-level patterns from both 
quantitative behaviours, represented by hand-crafted features, 
and semantic word cues from the URL tokens.

In parallel, the model processes the raw URL strings using 
character-level tokenization on the BiLSTM branch. The 
outputs of the Semantic NLP + hand-crafted DNN branch and 
the BiLSTM branch are combined, fused through an additional 
dense layer, and passed into a sigmoid-activated output neuron 
for binary classification. The model is trained using binary cross-
entropy loss, optimized via Adam.



Copyright © Armaya’u Zango Umar, et al.

J Mat Sci Eng Technol, 2026

 Volume 4 | Issue 1

www.oaskpublishers.com Page: 5 of 8

Transformer Architecture
This model added a URL Transformer encoder to the DNN-
BiLSTM architecture. The URL Transformer block defines 
multi-head self-attention, residual connections, and feed-
forward layers, resembling the encoder module of the original 
Transformer architecture. The sequence is passed through two 
BiLSTM layers: the first with 128 units returning sequences, 
and the second with 64 units reducing it to a fixed-length output 
vector. This two-stage BiLSTM stack captures both local and 
long-range dependencies in the URL string, a critical advantage 
when detecting manipulations that occur across various positions 
in the URL.

The outputs of the DNN branch and the BiLSTM branch are 
concatenated to form a unified latent representation. This 
combined vector is passed through a dense layer with 64 GELU-
activated neurons, followed by dropout. The final classification 
is performed using a sigmoid-activated neuron that outputs the 
probability of the instance being phishing or legitimate. The 
model is compiled using binary cross-entropy loss and optimized 
with the Adam optimizer, utilizing a custom exponential decay 
learning rate schedule. This schedule starts with a learning rate 
of 0.001 and decays over time, facilitating better convergence 
during prolonged training. To avoid overfitting and ensure 
optimal performance on phishing detection (class 1), early 
stopping is configured to monitor validation recall with a 
patience of five epochs. Furthermore, class weights are applied 
to slightly prioritize the minority class, addressing mild label 
imbalance.

Evaluation
In the context of this study, the evaluation process involves 
various metrics and techniques to measure the model's predictive 
accuracy and generalization capabilities.

Precision: Calculates the proportion of true positive predictions 
among all positive predictions. It's a measure of the model's 
ability to avoid false positives. The formula is given as:

TPPrecision
TP FP

=
+

Where TP means True Positive and FP means False Positive

Recall (Sensitivity): Calculates the proportion of true positive 
predictions among all actual positives. It's a measure of the 
model's ability to capture all positives. The formula is given as:

Re TPcall
TP FN

=
+

Where FN means False Negative

F1-Score: Harmonic mean of precision and recall, providing 
a balance between the two metrics. Useful when the class 
distribution is imbalanced. The formula is:

21 precision recallF
precision recall
× ×

=
+

Runtime. Runtime refers to the total amount of time a model 
takes to complete a specific task, such as training or inference. 
In the context of phishing URL detection, runtime is typically 
measured in seconds (s) and serves as an essential metric for 
evaluating a model’s computational efficiency and practicality.

Results and Discussions 
This section presents a comprehensive analysis of experimental 
results evaluating the performance, computational efficiency, 
and robustness of four machine learning models across diverse 
dataset conditions. The investigation focuses on three critical 
dimensions: (1) model effectiveness on noisy versus cleaned 
datasets, measured by F1-scores; (2) computational runtime 
efficiency; and (3) the trade-offs between training time and 
classification accuracy, particularly in the context of phishing 
detection.

Figure 2: Comparison of FNN, DNN-BiLSTM, Transformer, 
and Semantic NLP before label noise correction using the F1-
score metric

The bar graph, in Figure 2 provides a quantitative comparison 
of four models: Feedforward Neural Network (FNN), Deep 
Neural Network with Bidirectional Long Short-Term Memory 
(DNN-BiLSTM), Transformer, and Semantic NLP, using the F1-
score metric. The results reveal distinct disparities in the models' 
ability to handle noise, with scores as follows: FNN: 0.96, DNN-
BiLSTM: 0.96, Transformer: 0.96, and Semantic NLP: 0.97.

Semantic NLP emerged as the top-performing model, achieving 
an F1-score of 0.97. This superior performance can be attributed 
to its focus on contextual and semantic understanding, which 
enables it to discern meaningful patterns despite noise. By 
leveraging advanced linguistic features, Semantic NLP mitigates 
the distortions introduced by noisy data, making it particularly 
effective for tasks requiring nuanced interpretation.

Figure 3: Comparison of FNN, DNN-BiLSTM, Transformer, 
and Semantic NLP after label noise correction on three datasets: 
(i) Raw dataset, (ii) Dataset balanced with SMOTE, and (iii) 
Dataset augmented with CTGA- using the F1-score metric
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The graph in Figure 3 shows that the FNN consistently 
outperformed other models across all cleaned datasets, achieving 
the highest score (0.98) on the dataset with label noise corrected 
(Cleaned Raw). This suggests that for cleaned datasets, simpler 
architectures may sometimes outperform more complex 
ones. DNN-BiLSTM maintained strong performance, closely 
following FNN, indicating that its bidirectional processing 
remains effective even with cleaned data. The Transformer 
showed moderate performance, while Semantic NLP, despite 
its sophistication, ranked lowest in this comparison. The FNN's 
strong performance challenges the common assumption that 
complex models always outperform simpler ones.

Figure 4: Comparison of computational efficiency of FNN, 
DNN-BiLSTM, Transformer, and Semantic NLP after label 
correction

The bar graph in Figure 4 shows the following results: DNN-
BiLSTM: 653.1 seconds, FNN: 39.47 seconds, Semantic NLP: 
32.3 seconds, Transformer: 810.7 seconds. Thus, FNN Semantic 
NLP, despite its advanced semantic processing capabilities, also 
demonstrates impressive efficiency. In contrast, DNN-BiLSTM 
and Transformer exhibited significantly higher runtimes (653.1 
seconds and 810.7 seconds, respectively). The DNN-BiLSTM's 
bidirectional recurrent layers require sequential processing 
of data in both forward and backward directions, leading to 
increased computational time. The Transformer, while powerful, 
suffers from the quadratic complexity of its self-attention 
mechanisms, particularly for longer input sequences, which 
explains its status as the slowest model in this comparison.

Figure 5: The trade-offs between model training time and 
classification performance for various phishing detection models 
and datasets

Figure 5 presents the trade-offs between model training time and 
classification performance for various phishing detection models 
and datasets. The x-axis, scaled logarithmically, quantifies the 

training duration in seconds, reflecting computational resource 
allocation. The y-axis represents the F1-Score, a robust metric 
for evaluating classification models, particularly in scenarios 
with imbalanced class distributions, as it harmonically averages 
precision and recall.  The shaded light green region at the upper-
left quadrant of the plot signifies the optimal zone. This area 
delineates models that concurrently achieve high F1-Scores 
(generally exceeding 0.95) and relatively expedient training 
times (approximately below 200 seconds). This zone represents 
the ideal balance between predictive accuracy and computational 
efficiency.

Notably, several FNN configurations, especially those trained on 
Cleaned Raw, Cleaned SMOTE, and Noisy SMOTE datasets, 
are situated within or in close proximity to this optimal zone. 
These models consistently yielded F1-Scores above 0.97 with 
training durations significantly less than 100 seconds. This 
finding underscores the potential of FNNs, when coupled with 
Confidence Learning, to serve as highly efficient and effective 
solutions for phishing detection. Models such as DNN-BiLSTM 
Cleaned Raw and Semantic NLP Noisy Raw demonstrate 
commendable F1-Scores (approaching 0.97-0.98), indicating 
strong classification capabilities. However, their placement 
further to the right on the x-axis reveals substantially longer 
training times, extending into several hundred seconds. This 
suggests that while these models offer high accuracy, their 
computational demands for training may be considerable. 

Conversely, certain model-dataset combinations exhibit 
suboptimal F1-Scores. For instance, FNN Noisy CTGAN yields 
a very low F1-Score (around 0.85) despite a moderate training 
time. Even more critically, DNN-BiLSTM Noisy CTGAN 
not only demonstrates poor performance but also incurs an 
exceedingly long training time, approaching 1000 seconds. Such 
instances highlight the critical interplay between model choice, 
data quality, and the efficacy of augmentation techniques.

Discussions 
The effectiveness of CleanLab as a noise-removal tool becomes 
evident when evaluating its impact across various models and 
datasets, particularly on FNN and the replicated DNN-BiLSTM 
architecture. For instance, the FNN trained on noisy raw data 
achieved a baseline F1-score of 0.96. After applying CleanLab 
to this same dataset, the accuracy improved to 0.98, marking a 
2% increase. This improvement demonstrates the value of label 
noise correction. This enhancement also becomes more notable 
when compared to the replicated DNN-BiLSTM architecture, 
which achieved 0.97 on the same cleaned dataset. Despite the 
architectural sophistication of the hybrid model, the cleaned 
FNN still outperformed it by a margin of 1%, indicating that 
data quality can rival-or even outweigh complex model when it 
comes to performance gains.

An even more dramatic effect of label cleaning is observed on 
synthetically augmented datasets, particularly those generated 
using CTGAN. CTGAN is known to introduce a high degree 
of variability, and occasionally noise, due to its generative 
adversarial nature. When FNN was trained on the raw CTGAN-
generated dataset, it recorded a poor performance of 0.85, 
highlighting the detrimental effect of training on synthetic 
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samples with noisy or ambiguous labels. However, after the data 
was cleaned using CleanLab, the model’s performance surged to 
0.95, reflecting a 10% absolute improvement. This underscores 
the critical importance of post-synthetic label verification when 
using generative data augmentation strategies.

Similarly, the replicated DNN-BiLSTM architecture showed 
improvement when trained on SMOTE-augmented data. On raw 
SMOTE data, it achieved an F1-score of 0.97. After applying 
CleanLab, this score nudged upward to 0.98. While the gain here 
is modest (1%), it confirms that even high-quality oversampling 
methods like SMOTE can benefit from noise filtering, especially 
by removing subtle outliers or mislabelled data that may 
otherwise misguide gradient updates during training.

Conclusion 
This study demonstrates that a simple Feedforward Neural 
Network (FNN), when trained on a dataset with label 
noise corrected using the Cleanlab framework, can achieve 
performance comparable to or surpassing more complex deep 
learning architectures, such as the hybridized Deep Neural 
Network and Bidirectional Long Short-Term Memory (DNN-
BiLSTM), DNN-BiLSTM with a transformer, and DNN-
BiLSTM with semantic Natural Language Processing (NLP) 
features, in the task of phishing URL detection. The FNN 
achieved an impressive F1-score of 0.98 on the cleaned raw 
dataset, outperforming the more sophisticated models while 
requiring significantly lower computational resources, with 
a training time of approximately 39.47 seconds compared to 
over 600 seconds for DNN-BiLSTM and 810.7 seconds for the 
transformer-based model. The application of Cleanlab for label 
noise correction proved critical, enhancing model performance 
by up to 10% on synthetically augmented datasets like those 
generated by CTGAN. These findings challenge the prevailing 
trend of pursuing increasingly complex architectures for 
marginal performance gains, highlighting the importance of data 
quality over model complexity. Future research could explore 
the generalizability of these findings across diverse datasets and 
cybersecurity tasks.
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