

ISSN: 3029-0724

Research Article

Journal of Environmental Science and Agricultural Research

Broiler Meat Sensory Influence after using Bee Pollen as Alternative Supplemental Diet on their Feed Mixture

Ibrahim Omer Elimam^{1*}, Sadettin Çelik² and Khalid Khalifa Elhaj³

- ¹Faculty of animal production, university of East Kordofan, Sudan
- ²Department of Forestry, Genç Vocational School, University of Bingol, Bingol 12500, Turkey
- ³Faculty of science and technology, Merowe University of Technology (Abdulatif Alhamad-Sudan

*Corresponding author

Ibrahim Omer Elimam, Faculty of animal production, university of East kordofan, Sudan.

Received: November 12, 2025; Accepted: November 20, 2025; Published: November 27, 2025

ABSTRACT

The study aimed to investigate the effect of pollen as a natural supplement diet on broiler chicken meat sensory. The study was tested 180-day-old chickens, divided into 6 groups (n=30). Sensory evaluation of the thigh and breast meat samples was tested after have been heat-treated and were evaluated by a six-member, trained meat sensory evaluation panel. Participants rated aroma, juiciness, taste, and tenderness on a 5-point hedonic scale where 1 (worst) and 5 (best) were the maximums for each attribute. The aroma, taste, juiciness, and tenderness values of the pectoral beast muscles and thigh in the experimental groups were higher than the control. The pollen has a positive effect on the of chicken sensory with significant impact. The shear strength value of chicken thigh and breast were higher in experimental group compered to control and they found significant in thigh. The broiler carcass baking losses, as technological parameter, were higher without significantly impact by nutrition with pollen supplement.

Keywords: Broiler, Sensory, Pollen, Aroma, Taste, Shear Force

Introduction

Many studies have been showing that bee pollen has a rich and balanced formula that can serve as a nutritional supplement for humans and animals, while its richness in bioactive compounds, especially polyphenols, gives it a wide range of biological and pharmacological activities [1,2]. Pollen from various floral sources have been shown to possess anesthetic, (anti-cancer and antimutagenic and antioxidant, anti-ulcer and immunostimulating properties [3-5]. Pollen contains a large and diverse number of phenolic components (total phenols, phenylpropanoids, flavonoids, and anthocyanins) and has antioxidant activity [6-8]. The growing demand for poultry meat has led to a need to increase production, such as pollen is a cheaper and more economical alternative to chicken feed, and has no negative effects [9-11]. Poultry meat has become one of the most important sources of

protein for humans in terms of health benefits, economics cost, and production efficiency, poultry production has witnessed significant growth due to increased demand for poultry meat and eggs, driven by population growth, industrial development, and increased purchasing power [12]. This growth has subsequently led to increased demand for poultry meat [13-15]. A sensory test was conducted on meat, Sensory evaluation is an analysis of the properties of a product perceived through the human senses such as smell, taste, touch, and sight, as well as its tenderness [16]. They state that there are two general types of sensory methods, such as laboratory analysis methods that use a small number of participants to determine whether there is a difference between samples, the nature of the trend, and the severity of the difference, and active consumer methods that involve a larger number of participants and include tests that measure how consumers feel or interact with the product to provide a measure of preference, acceptance, liking, or disliking [17].

Citation: Ibrahim Omer Elimam, Sadettin Çelik, Khalid Khalifa Elhaj. Broiler Meat Sensory Influence after using Bee Pollen as Alternative Supplemental Diet on their Feed Mixture. J Envi Sci Agri Res. 2025. 3(6): 1-4. DOI: doi.org/10.61440/JESAR.2025.v3.109

Research Methodology

Experimental Site and Duration

The treatment was conducted at a poultry farm affiliated to the University of East Kordofan, South Kordofan State, Sudan. Temperatures ranged from 26 to 32°C, reaching 43°C in summer. GPS coordinates of South Kordofan State, Sudan. Latitude: 11.2667, longitude: 30.833.

Experimental House

Chicks from each replicate were placed in single cages in an open-house system (1 m²). The temperature was controlled during the fattening period and to be 33 C0 at the first day and every week was reduced about 2 C0. The lighting during the experimental period was continuous. each cage equipped with feed trough and water were offered (ad libitum) through a self feed-pump.

Experimental Chickens

The study was tested 180-day-old chickens (cobb 500) breed, divided into 6 groups (n=30). The chicks were kept under strict hygienic conditions throughout the experiment. The chicks were randomly selected, weighed to obtain initial body weight without any significant difference, and then distributed into six (6) treatment groups. (C, T1, T2, T3, T4 and T5) (n=30) Which was divided into three replicates according to a completely randomized design (CRD) for 42 days.

Experimental Diets

Two basic diets were used to meet the requirements of the Cobb 500 breed for starter and finisher broiler chicks. The distribution of experimental bird groups was divided into six experimental groups, the first group was the control (C) which was fed a basal diet without bee pollen additives, and after the first week bee pollen was added at a dose to each experimental group. (T1, 1100, T2, 1600, T3, 2600, T4, 3600 & T5, 4600 mg.kg-1). Each group was fed the same starter feed from day 1 to day 21 of age, and from day 22 to day 42, the birds were fed the supplementary feed. Micronutrient analysis was performed according to the methods specified by the American Poultry Association (AOAC) (1990). Nutritional value (Table 1).

Statistical Analysis

The experimental data were evaluated using the General Liner model using SPSS 17.0 (Statistical Package for the Social Sciences, released on August 23, 2008). Statistical significance was determined using one-way analysis of variance, followed by Duncan's test ($P \le 0.05$) as the significance threshold [18].

Table 1: Broiler chicken complete feed mixture (CFM)

Ingredient (%)	Starter (1 to 21 days)	Grower (22 to 42 days)	
Wheat	35.00	35.00	
Maize	35.00	40.00	
Soybean meal (48 % N)	21.30	18.70	
Fish meal (71 % N)	3.80	2.00	
Dried blood	1.25	1.25	
Ground limestone	1.00	1.05	
Monocalcium phosphate	1.00	0.70	

Fodder salt	0.10	0.15					
Sodium bicarbonate	0.15	0.20					
Lysine	0.05	0.07					
Methionine	0.15	0.22					
Palm kernel oil Bergafat	0.70	0.16					
Premix Euromix BR 0,5 %	0.50	0.50					
Nutrient composition (g.kg ⁻¹)							
1 (0 0		100.42					
Crude protein	210.76	190.42					
Fibre	30.19	29.93					
Ash	24.24	19.94					
Ca	8.16	7.28					
P	6.76	5.71					
Mg	1.41	1.36					
Linoleic acid	13.51	14.19					
ME _N (MJ.kg ⁻¹), calculated	12.02 12.03						

Active substance: Salinomycin sodium; 4 active substances per kg of the premix: vit. A 2,500,000 IU; vita. E 50,000 mg; vitamin D3 800,000 IU; niacin12,000 mg; d-pantothenic acid 3,000 mg; riboflavin 1,800

Results and Discussion

The recent experiment was conducted to study the effect pollen as a nutritional supplement diet in different dose on broiler (cobb 500) meat sensory. Tables (2 & 3) show that the values of chicken breast and thigh muscles in terms of aroma, taste, juiciness and tenderness, the results mentioned that the experimental flocks were higher compared to the control and significant differences (P≤0.05) were found in aroma and juiciness in breast also the significant differences (P < 0.05) were found in aroma, teste, juiciness and tenderness in broiler thigh, moreover how used pollen and propolis as alternatives in different level into broiler feed mixture for study broiler meat sensory they also found a positive effect of bee pollen and propolis on the sensory quality and oxidative stability of poultry meat [17-23]. evaluated the effect of propolis used in broiler feed mixtures on selected quality indicators of cooked pork and it was found that propolis extract as a feed additive for broiler chickens did not show any negative sensory parameters for the broiler feed mixture and cooked and ready-to-eat pork and was not significantly affected (P>0.05). [24] tested the effects of pollen inclusion on the performance and carcass characteristics of broiler chickens, and variation, meat pH, shear strength and sensory evaluation were not affected in both sexes (P>0.05). On the other hand, found that pollen causes negative effects on the physicochemical properties of meat and sensory evaluation in both male and female broiler chickens [25]. Table (4) the results of specific shear forces and weight loss values in the pectoral muscles showed no significant increase at T2 and T4, while they decreased significantly at T1 and T3 compared to the control group. Statistically significant differences were also found between the experimental and control groups [26], studied the functions of propolis as a natural feed additive in poultry and found in his results the effect of propolis as an antioxidant on performance, carcass characteristics, behavior, immunity and physiological balance in domesticated poultry species (broiler, egg, quail and duck); and the future needs of poultry research. The results of this study indicate that pollen and propolis supplementation (50 μ l/kg body weight) can be used as a prophylaxis against coccidiosis and a natural growth promoter in rabbits without affecting animal health and meat quality [27]. This result is consistent with other studies that have shown that the addition of several additives with powerful antioxidants effects, such as selenium, Ginkgo

biloba leaves, propolis, and pollen, significantly reduced drip loss values in chicken meat. [28-30]. The findings of this study indicate that the use of propolis as a nutritional supplement has an overall better effect on meat quality, positively impacting several parameters, while pollen significantly affects chicken meat color and skin color [31].

Table 2: Breast meat muscles sensory evaluation for broiler chickens (cobb 500)

	N	C (BP 0)	T1 (BP 600)	T2 (BP (1600)	T3 (BP 2600)	T4 (BP 3600)	T5 (BP 4600)
Aroma	30	4.18±0.17 ^a	4.21±0.19 ^a	4.40±0.17 ^b	4.37±0.20 ^b	4.22±0.23abc	4.25±0.12abc
Tase	30	4.04±0.20	4.05±0.27	4.19±0.21	4.18±0.11	4.11±0.13	4.14±0.12
Juiceness	30	3.76±0.25 ^a	3.80±0.26ab	4.08±0.31 ^b	3.85±0.18ab	3.86±0.22ab	3.97±0.26ab
Tenerness	30	3.82±0.30	3.91±0.28	4.08±0.34	3.97±0.24	4.01±0.29	4.40.22

*C: control flocks, T1, T2, T3, T4, T5: experimental flocks, *mean: average, *S. D: standard deviation, BP: bee pollen, Mean values in the same columns with different superscripts (a,b,c) are significant ($P \le 0.05$) levels.

Table 3: Thigh meat muscles sensory evaluation for broiler chickens (cobb 500)

	N	C (BP 0)	T1 (BP 600)	T2 (BP (1600)	T3 (BP 2600)	T4 (BP 3600)	T5 (BP 4600)
Aroma	30	4.11±0.32a	4.19 ± 0.21^{ab}	4.24±0.27ab	4.16±0.18ab	4.35±0.12 ^b	4.33±0.10 ^b
Tase	30	3.94±0.22 ^a	4.17±0.24 ^b	$4.07{\pm}0.14^{ab}$	4.06±0.23ab	4.13±0.18ab	4.18±0.16 ^b
Juiceness	30	4.10±0.15 ^a	$4.17{\pm}0.29^{ab}$	4.23±0.16 ^{ab}	4.13±0.11ab	4.22±0.23ab	4.27±0.13 ^b
Tenerness	30	4.19±0.70 ^a	$4.25{\pm}0.17^{ab}$	4.31±0.16 ^{ab}	4.29±0.13ab	4.38±0.14 ^b	4.35±0.15 ^b

*C: control flocks, T1, T2, T3, T4, T5: experimental flockss, *mean: average, *S. D: standard deviation, BP: bee pollen, Mean values in the same columns with different superscripts (a,b,c) are significant $(P \le 0.05)$ levels.

Table 4: Meat Quality indicators for broiler chickens (cobb 500)

		N	C (BP 0)	T1 (BP 600)	T2 (BP (1600)	T3 (BP 2600)	T4 (BP 3600)	T5 (BP 4600)
Shear force	Breast	30	1.93 ± 0.6	1.87±0.9	2.03 ± 0.3	1.89±0.8	2.07±0.7	1.66±0.5
[kg.cm ⁻²]	Thigh	30	1.31±0.3ac	0.94±0.3b	1.52±0.4a	0.98±0.3b	1.13±0.2abc	1.17±0.4bc
wieght loss[%]	Broiler carcass	30	30.30±1.6	28.27±1.9	29.86±1.7	29.22±1.4	29.70±1.4	30.29±0.7

*C: control flocks, T1, T2, T3, T4, T5: experimental flockss, *mean: average, *S. D: standard deviation, BP: bee pollen, Mean values in the same columns with different superscripts (a,b,c) are significant $(P \le 0.05)$ levels.

Conclusion

Research has shown that bee pollen has a positive effect on sensory of chicken thighs and breasts. Shear strength in chicken thighs was also significantly improved, and weight loss, a second technological criterion, was not significantly affected by the addition of bee pollen.

Referecess

- Campos MG, Frigerio C, Bobiş O, Urcan AC, Gomes NG. Infrared irradiation drying impact on bee pollen: Case study on the phenolic composition of Eucalyptus globulus labill and Salix atrocinerea Brot. pollens. Processes. 2021. 9: 890.
- Kacemi R, Campos MG. Translational research on bee pollen as a source of nutrients: A scoping review from bench to real world. Nutrients. 2023. 15(: 2413.
- 3. Baky MH, Abouelela MB, Wang K, Farag MA. Bee pollen and bread as a super-food: A comparative review of their metabolome composition and quality assessment in the context of best recovery conditions. Molecules. 2023. 28: 715.

- 4. Alshallash KS, Abolaban G, Elhamamsy SM, Zaghlool A, Nasr A, et al. Bee pollen as a functional product—chemical constituents and nutritional properties. Journal of Ecological Engineering. 2023. 24: 173-83.
- 5. Xue F, Li C. Effects of ultrasound assisted cell wall disruption on physicochemical properties of camellia bee pollen protein isolates. Ultrasonics Sonochemistry. 2023. 92: 106249.
- 6. Broadhurst CL. Bee products: medicine from the hive. Nutrition science news. 1999. 4: 366-368.
- Leja M, Mareczek A, Wyżgolik G, Klepacz-Baniak J, Czekońska K. Antioxidative properties of bee pollen in selected plant species. Food chemistry. 2007. 100: 237-240.
- 8. Šarić A, Balog T, Sobočanec S, Kušić B, Šverko V, et al. Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food and Chemical Toxicology. 2009. 47: 547-554.
- 9. Persia ME, Parsons CM, Schang M, Azcona J. Nutritional evaluation of dried tomato seeds. Poultry science. 2003. 82: 141-146.

- 10. Salajegheh MH, Ghazi S, Mahdavi R, Mozafari O. Effects of different levels of dried tomato pomace on performance, egg quality and serum metabolites of laying hens. African journal of biotechnology. 2012. 11: 15373-15379.
- 11. Dotas D, Zamanidis S, Balios J. Effect of dried tomato pulp on the performance and egg traits of laying hens. British Poultry Science. 1999. 40: 695-697.
- 12. Choi J, Kong B, Bowker BC, Zhuang H, Kim WK. Nutritional strategies to improve meat quality and composition in the challenging conditions of broiler production: a review. Animals. 2023. 13: 1386.
- 13. Betti M, Perez TI, Zuidhof MJ, Renema RA. Omega-3-enriched broiler meat: 3. Fatty acid distribution between triacylglycerol and phospholipid classes. Poultry Science. 2009. 88: 1740-1754.
- 14. Daniel CR, Cross AJ, Koebnick C, Sinha R. Trends in meat consumption in the USA. Public health nutrition. 2011. 14: 575-583.
- 15. Tavárez MA, Solis de los Santos F. Impact of genetics and breeding on broiler production performance: a look into the past, present, and future of the industry. Animal Frontiers. 2016. 6: 37-41.
- Owosibo AO, Okere IA, Owosibo OT. Growth, carcass and sensory traits of broiler chickens fed graded levels of extruded sesame seed meal. Nigerian Journal of Animal Science. 2017. 19: 94-102.
- 17. Haščík P, Omer Elamin Elimam I, Garlík J, Bobko M, Kročko M. Sensory evaluation of broiler meat after addition Slovak bee pollen in their feed mixture. Slovak Journal of Food Sciences/Potravinarstvo. 2013. 7.
- 18. Capar SG. Association of Jaoac Official Analytical Chemists. Journal of the Association of Official Analytical Chemists. 1990. 73: 321.
- 19. Haščík P, Elimam IO, Garlík J, Kačániová M, Čuboň J, et al. The effect of bee pollen as dietary supplement on meat chemical composition for broiler Ross 308. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 2013. 61: 71-6.
- 20. Hascik P, Elimam IO, Bobko M, Kacaniova M, Pochop J, et al. Oxidative stability of chicken meat after pollen extract application in their diet. Journal of microbiology, biotechnology and food sciences. 2011 Aug 1;1(1):70-82.
- 21. Bobko M, Haščík P, Bobková A, Kňazovická V, Tóth T, et al. Influence of different plant supplements applied in chicken nutrition on quality of their meat. Journal of microbiology, biotechnology and food sciences. 2012. 1: 1020-1031.
- Haščík P, Garlík J, Kňazovická V, Kačániová M, Elimam IO, et al. Technological properties of chicken's meat after application of propolis extract in their diet. Journal of microbiology, biotechnology and food sciences. 2012. 1: 1295-1304.

- 23. Miroslav Kročko, Marek Bobko, Margita Čanigová, Peter Haščík, Viera Ducková, et al. Effect of Propolis Used in the Broiler Feed Mixtures to the Selected Quality Indicators of Cooked Ham. Animal Science and Biotechnologies. 2023. 46: 22-26.
- Nemauluma MF, Manyelo TG, Ng'ambi JW, Kolobe SD, Malematja E. Effects of bee pollen inclusion on performance and carcass characteristics of broiler chickens. Poultry Science. 2023. 102: 102628.
- 25. Nemauluma MF, Ng'Ambi JW, Kolobe SD, Malematja E, Manyelo TG, Chitura T. Bee pollen an alternative to growth promoters for poultry production-a review. Applied Ecology & Environmental Research. 2022. 20.
- 26. Mahmoud UT, Cheng HW, Applegate TJ. Functions of propolis as a natural feed additive in poultry. World's Poultry Science Journal. 2016. 72.
- 27. María Inés Sierra- Galicia, Raymundo Rodríguez-de Lara, José Felipe Orzuna-Orzuna, Alejandro Lara-Bueno, José Guadalupe García-Muñiz, Marianela Fallas-López and Pedro Abel Hernández-García. Supplying Bee Pollen and Propolis to Growing Rabbits: Effects on Growth Performance, Blood Metabolites, and Meat Quality. Life. 2022, 12: 1-15.
- 28. Cao FL, Zhang XH, Yu WW, Zhao LG, Wang T. Effect of feeding fermented Ginkgo biloba leaves on growth performance, meat quality, and lipid metabolism in broilers. Poultry Science. 2012. 91: 1210-1221.
- 29. Wang Y, Zhan X, Zhang X, Wu R, Yuan D. Comparison of different forms of dietary selenium supplementation on growth performance, meat quality, selenium deposition, and antioxidant property in broilers. Biological Trace Element Research. 2011. 143: 261-73.
- 30. Perić L, Milošević N, Žikić D, Kanački Z, Džinić N, et al. Effect of selenium sources on performance and meat characteristics of broiler chickens. Journal of Applied Poultry Research. 2009. 18: 403-409.
- 31. Prakatur I, Miškulin I, Senčić Đ, Pavić M, Miškulin M, Samac D, Galović D, Domaćinović M. The influence of propolis and bee pollen on chicken meat quality. Veterinarski arhiv. 2020. 90: 617-625.

Copyright: © 2025 Ibrahim Omer Elimam, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.